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Estimation of quantum states and measurements is crucial for the implementation of quantum
information protocols. The standard method for each is quantum tomography. However, quantum
tomography suffers from systematic errors caused by imperfect knowledge of the system. We present
a procedure to simultaneously characterize quantum states and measurements that mitigates sys-
tematic errors by use of a single high-fidelity state preparation and a limited set of high-fidelity
unitary operations. Such states and operations are typical of many state-of-the-art systems. For
this situation we design a set of experiments and an optimization algorithm that alternates between
maximizing the likelihood with respect to the states and measurements to produce estimates of
each. In some cases, the procedure does not enable unique estimation of the states. For these cases,
we show how one may identify a set of density matrices compatible with the measurements and
use a semi-definite program to place bounds on the state’s expectation values. We demonstrate the
procedure on data from a simulated experiment with two trapped ions.

PACS numbers: 03.65.Wj, 03.67.-a, 37.10.Ty,

I. INTRODUCTION

Recent experiments have demonstrated high-fidelity
unitary operations in various platforms for quantum in-
formation processing; for examples see Refs. [1–6]. Even
in the most advanced systems, some operations are
harder to accomplish and have significantly lower fidelity
than others. For example, in the systems reported in
Refs. [1–6] single-qubit gates are accomplished with sig-
nificantly higher fidelity than two-qubit gates. A natural
question is then, how can we use the high-fidelity opera-
tions to diagnose other parts of the quantum system? In
this work, we propose such a procedure that uses a single
high-fidelity state initialization and a limited set of uni-
tary operations to diagnose other state preparations and
measurement operators.

The standard method to diagnose state preparations
and measurements is quantum tomography (QT). Quan-
tum state tomography (QST) is a procedure to estimate
an unknown quantum state from experimental data.
When the measurements are informationally complete,
the resulting data can be used to estimate the corre-
sponding density matrix [7, 8], and we say that the state
is “identifiable.” Quantum detector tomography (QDT)
is a procedure to estimate an unknown quantum mea-
surement operator [9, 10]. When the unknown measure-
ment is applied to an informationally-complete set of al-
ready known quantum states, the resulting data can be
used to create an estimate of the measurement operator,
and the measurements are identifiable.
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A drawback to standard QST and QDT is that they
require well-known measurements and state preparations
respectively. However, it is difficult to produce such mea-
surements and state preparations when some processes
have significantly lower fidelity than others. Attempting
standard QT in this case typically results in estimates
with systematic errors.

To combat systematic errors, we adapt standard QST
and QDT to the situation where a single state prepara-
tion and a limited set of unitary operations (for example,
single-qubit rotations) have significantly higher fidelity
than other processes and measurements. For this situ-
ation, we develop a procedure to estimate other states
and the measurement operators simultaneously with an
alternating maximum likelihood estimation (MLE) algo-
rithm. When the measurements are not informationally
complete the state is non-identifiable. However, it is “set
identifiable,” meaning that we can specify a set of den-
sity matrices that are compatible with the measurements.
This set can be used to upper- and lower- bound impor-
tant quantities like fidelity of the state preparations or
expectation values of other observables. The estimates
also provide information about the quantum processes
that produced the unknown states.

Systems with a limited set of high-fidelity processes are
common in state-of-the art quantum information exper-
iments. Our original motivation comes from trapped-ion
experiments where single-qubit gates have been demon-
strated with high-fidelity, but entangling gates have lower
fidelities. The procedure described here was implemented
in trapped-ion experiments described in Ref. [1, 11]. We
return to the trapped-ion example throughout this paper
to illustrate our procedure.

QT with unknown states and measurements has been
considered in previous work [12, 13]. Our procedure dif-
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fers from these works by using alternating MLE, which
yields estimates consistent with all the data collected.
Our procedure also resembles other variants of QT,
such as self-consistent [14, 15] and gate-set tomography
(GST) [16]. These methods treat the quantum system as
a “black-box” about which nothing (or almost nothing)
is known. Notably, in GST one has access to a collection
of unknown quantum processes or “gates,” and one cre-
ates a series experiments, applying the gates in different
orders. By performing the proper experiments, one can
find a full estimate of all the gates simultaneously (up to
an unobservable gauge) [16]. The method has been suc-
cessful in experiments for single qubit systems [17–19]. In
GST, the goal is to learn everything about the system.
In our procedure, we assume more about the system and
ask less about the outcome, thereby requiring fewer ex-
periments. While this requires stronger pre-experiment
knowledge about the system than is available in GST,
we believe that it is well suited to a situation that occurs
in many state-of-the-art experiments and complements
these other proposals.

We begin by defining and describing the standard
methods for QST and QDT in Sec. II. We also dis-
cuss and physically motivate some additional assump-
tions about the measurement that greatly simplify our
procedure. Then, in Sec. III, we introduce the exper-
iments required for our procedure and discuss the ap-
plication to the example trapped-ion system. Next, we
discuss our numerical technique to extract estimates of
the states and measurements from the experimental data
in Sec. IV. In Sec. V, we show how to upper- and lower-
bound important expectation values if the states are only
set-identifiable. We then discuss how to estimate the un-
certainties Sec. VI. We summarize our procedure and
discuss future directions in Sec. VII. We also include
three appendices that describe our software implemen-
tation (App. A), a method for coarse-graining measure-
ment outcomes (App. B), and the stopping criteria for
iterations of the likelihood maximization (App. C).

II. GENERAL MODEL

Our procedure is rooted in QST and QDT, so we be-
gin with a brief description of the standard version of
each. We focus on quantum systems that are described
with finite, d-dimensional Hilbert spaces. QST is a pro-
cedure to estimate the unknown d× d density matrix ρ,
that describes the state of a quantum system. To esti-
mate ρ, we prepare many identical copies of the quantum
state and apply a known quantum measurement to each.
In the following, a sequence of identical state prepara-
tions and measurements is called an “experiment”, while
a particular state preparation and measurement in an
experiment is referred to as a “trial.” A quantum mea-
surement is associated with the measurement operators
Fb of a POVM {Fb}b, where Fb ≥ 0 and

∑
b Fb = 1. The

probability of outcome b in a trial is given by the Born

rule pb = Tr (Fbρ). In some instances, several different
POVMs are used for QST, in these cases we perform sep-
arate experiments for each POVM. The QST formalism
assumes that uncertainty about the measurement oper-
ators of the POVMs is negligible. If the measurement
operators from all experiments span the bounded oper-
ators on the Hilbert space, we call the set of POVMs
“informationally complete” (IC). If the state’s probabil-
ities for the outcomes of a set of IC POVMs with spec-
ified measurement operators are exactly known, one has
all the information necessary to exactly reconstruct the
unknown density matrix [7, 8]. In an experimental im-
plementation, the probabilities are never exactly known,
because one only runs a finite number of trials. One
therefore numerically estimates the quantum state from
the measured frequencies of the outcomes via techniques
such as MLE [20, 21].

In QDT, the goal is to estimate the measurement op-
erators associated with an unknown quantum measure-
ment. To estimate the measurement operators, we pre-
pare many identical copies of members of a family of
known quantum states {ρj}j . We then perform experi-
ments where we prepare many copies of one member of
this family and apply the unknown quantum measure-
ments. For a given trial in one of these experiments the
probability of each outcome is given by the Born rule
pj,b = Tr (Fbρj). In the QDT formalism, we assume the
uncertainty about the states {ρj}j is negligible. We de-
fine an IC set of states for QDT as a set that spans the
bounded operators on the Hilbert space, which is analo-
gous to IC POVMs in QST. The probabilities from each
outcome along with the exact description of an IC set
of states allow for unique reconstruction of each mea-
surement operator. As with QST, in practice we cannot
determine the probability of each outcome due to a fi-
nite number of copies of the unknown state. Thus, the
measurement operators are numerically estimated from
the frequencies of the outcomes via techniques such as
MLE [10].

In this work, we use aspects of QST and QDT to cre-
ate a hybrid procedure that is useful when one has access
to a limited set of high-fidelity unitary operations. We
designate such a set of unitary operators with indices as

U = {Ui|i = 1, . . . , r}, where Ui[ρ] = UiρU
†
i and U0 is the

identity, U0 = 1. We additionally assume that we can re-
liably prepare a known state ρ0. Then, by applying the
high-fidelity processes to this state, we generate a family
of known states ρ = {ρi = Ui[ρ0]}i. There could be rep-
etitions in this family. In addition to these known states,
other processes generate a family of unknown states
σ = {σj |j = 1, . . . , s} to be characterized. All states
are read-out by an unknown quantum measurement de-
scribed by the POVM F = {Fb|b = 1, . . . ,M}. To mea-
sure in different bases, we apply one of the high-fidelity
processes prior to the measurement, thereby creating the

measurement operators Fi,b = U†i [Fb] = U†i FbUi, where
F0,b = Fb by definition of U0.

To significantly simplify our procedure, we add an ad-
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FIG. 1. Schematic describing the measurement model for a
single engineered measurement {Fi,b}b. A density matrix ρ
is rotated by the unitary operator Ui, which determines the
basis in which ρ is measured. In the measurement, first the
underlying POVM {Πk}k is applied, and result k is obtained
with probability Pk,i. Then, a Markov process acts to give
random outcome b with probability Qk,b. In the experiment
we only perceive the outcome b. Ellipses and dotted arrows
show that there may be an arbitrary finite number of under-
lying measurement operators Πk and values of b.

ditional assumption that the measurement operators Fb
are unknown mixtures of the operators of an underlying
POVM Π = {Πk|k = 1, . . . , N}, whose members are well
known. To avoid numerical instabilities, we assume that
no two measurement operators in Π are equal. The re-
sulting measurement is depicted in Fig. 1. We model the
measurement process by the application of the underly-
ing POVM Π yielding hidden outcome k, followed by an
unknown Markov process, after which outcome b is ob-
served. The Markov process is described by the transition
matrix Qk,b. (If the outcome b is a continuous variable,
our procedure requires discretization.) This situation is
common in many experiments, where physics constrains
the underlying quantum measurement process, but sub-
sequent incoherent effects make identification of the mea-
surement operators corresponding to outcomes difficult.
Previous techniques have further constrained the model
by assuming a form for the Markov process. For example,
in some ion trap experiments, the observed outcomes are
assumed to be a mixture of Poissonians given the hidden
outcomes [22, 23]. By not constraining the Markov pro-
cess by a model, we avoid systematic errors from model
mismatch.

The measurement operator Fb can now be expressed
in terms of the Markov process and the underlying mea-
surement operators as

Fb =
∑
k

Qk,bΠk. (1)

The probability of observing b given state ρ is pb =
Tr (Fbρ). The POVM F is referred to as the “bare
POVM.” As mentioned above, we also apply the high-
fidelity processes U prior to the measurement to create
“engineered POVMs” whose members are

Fi,b =
∑
k

Qk,bΠi,k, (2)

where Πi,k = U†i [Πk]. Because we designated U0 = 1,
{Fi,b}i,b is the complete family of measurement opera-
tors, bare and engineered.

In the theory described below, the underlying POVM
Π may be any POVM, but we specifically discuss POVMs
whose measurement operators are orthogonal subspace
projectors. This further assumption was originally mo-
tivated by trapped-ion experiments where the underly-
ing POVM consists of projectors onto orthogonal inter-
nal states of each ion. This model is a useful descrip-
tion because the quantization axis and measurements are
aligned with high accuracy (further details are given in
the next section). The situation also occurs in other ex-
periments with similarly high accuracy alignment. If the
assumption does not hold naturally, it can be easily en-
forced if the operations take place in a rotating frame.
Then the measurements can be decohered by randomiz-
ing the phase (or time) between the operations and mea-
surements for each trial. Then, averaged over many trials
any coherence will be lost and the underlying measure-
ment operators are orthogonal subspace projectors.

III. EXPERIMENTAL MEASUREMENT
PROCEDURE

Our procedure consists of two experimental steps fol-
lowed by numerical processing of the data. In this sec-
tion, we describe the experimental steps and introduce
an example application to trapped-ion systems to illumi-
nate the discussion. A schematic for the measurement
and numerical estimation procedure is in Fig. 2.

The first experimental step is related to standard QDT
of the bare POVM. We call the experiments done during
this step the “reference” experiments since they will be
used to initialize the algorithm described in the next sec-
tion. There is one reference experiment for each known
pure state ρi in ρ. The ith reference experiment, indexed
i, consist of n trials. In each trial, we prepare ρi and ap-
ply the bare POVM. The probability for outcome b in a
given trial is,

p
(0)
i,b = Tr (Fbρi) =

∑
k

Qk,bTr(Πkρi). (3)

The measurement outcomes are sampled from the distri-
bution given by Eq. (3). We assume the outcomes of the
trials are independent and identically distributed. The
outcomes of all trials from all reference experiments are
collected into a matrix H(0) such that row i is the rela-
tive frequency histogram for experiment i. Specifically,

the matrix element H
(0)
i,b is the number of times outcome

b is observed for experiment i divided by n. We call this
matrix the “histogram matrix” in the following.

The second experimental step is similar to QST, where
the goal is to extract information about the unknown
quantum states σ. We call the experiments done during
this step the “probing experiments,” because they are de-
signed to probe the unknown states. There is one prob-



4

𝜌" 𝒰$ 𝜌" 𝐹&
𝐹$,&

𝐻$,&
" 𝐹)*+,+

R
ef

er
en

ce
 

ex
pe

rim
en

ts
…

𝜎.

…

𝒰$ 𝜎. 𝐹&
𝐹$,&

𝐻$,&
.

RrR  𝜎/.012

Pr
ob

e 
ex

pe
rim

en
ts

𝐹)*012 …	 𝐹)*

𝐻$,*
"

𝐻$,*
.

Repeat n times for each i
Coarse 

grain bins

Check 
stopping 
criterion

OK to 
stop

…
…

…
…

Initial estimate of 
measurement

RrR  𝜎/.012…	

Maximize 
ℒ4

Maximize
ℒ5

…
…

…
…

FIG. 2. Schematic showing measurement and estimation procedure. Reference experiments begin with the preparation of the
known state ρ0, and probe experiments begin with unknown states from σ = {σj |j = 1, . . . , s}. During each experiment the
states are transformed by a process in the set U = {Ui|i = 0 . . . r} and then measured with the POVM F = {Fb|b = 1, . . . ,M},
giving outcome b. For simplicity, we assume every known process acts on each unknown state, but this is not necessary. After n

trials of each experiment, histograms {H(j)
b,i }b,i for each state are recorded. These histograms are then coarse-grained to produce

new histograms {H(j)
c,i }c,i based on a training data set composed of 10 % of the trials randomly selected without replacement

from each reference experiment. From the reference experiments’ data, we calculate an initial estimate for the POVM F̂ ini. We
divide the likelihood maximization into two concave subproblems: maximization of L1 with respect to σ and maximization of
L2 with respect to F . We alternate between using the RρR algorithm to maximize L1 and a standard nonlinear optimizer to
maximize L2. At each iteration we find maximizing parameters σ̂cur and F̂ cur, and we check a stopping criterion. When the
stopping criterion signals that we can stop iterations, we have the numerical maximum likelihood estimates σ̂ and F̂ .

ing experiment for each engineered POVM and unknown
state. The probing experiment, indexed by i, j, consists
of n trials, where in each trial, we prepare σj and apply
the engineered POVM indexed by i. The probability of
getting outcome b in a given trial is

p
(j)
i,b = Tr(U†i [Fb]σj) =

∑
k

Qk,bTr(Πi,kσj). (4)

The outcomes of the trials from the probing experiments
on state σj are collected into the histogram matrix H(j).

In general, the probability of outcome b in a trial of a
reference or probing experiment has the probability dis-
tribution,

p
(j)
i,b = Tr(U†i [Fb]τj) =

∑
k

Qk,bTr(Πi,kτj), (5)

where τ = (τj)
s
j=0 = (ρ0, σ1, . . . , σs). For j = 0, Eq. (5)

reduces to Eq. (3) and for j > 0 it reduces to Eq. (4).
In this discussion we have made a few simplifying as-

sumptions about the measurement record, such as that
every experiment contains the same number of trials and
that every state τj is subjected to the same set of mea-
surements. These assumptions are not necessary for our
procedure and are made here only to simplify the math-
ematical notation.

As an example of the complete procedure we consider
the task of diagnosing the internal state of two trapped
ions, similar to Ref. [1]. Each ion is treated as a single

qubit with computational basis |↑〉, called the “bright
state,” and |↓〉, called the “dark state.” Optical pumping
is used to initialize each ion in the bright state, ρ0 =
|↑↑〉 〈↑↑|, with high fidelity.

As in Ref. [1], we consider the high-fidelity processes to
be single-qubit rotations applied to both ions. A single-
qubit rotation is defined by

U(θ, φ) = exp
[
−i θ2 (σx cosφ+ σy sinφ)

]
, (6)

where σx and σy are Pauli operators. Collective ro-
tations U(θ, φ)⊗2 can be accomplished with, e.g., mi-
crowaves applied uniformly across the ion trap. For the
example discussed below, we choose the subset U =
{U(0, 0)⊗2, U(π2 , 0)⊗2, U(π, 0)⊗2, U(π2 ,

π
2 )⊗2} as the set

of high-fidelity processes. Since two-qubit entangling op-
erations have significantly lower fidelities, a natural task
is to diagnose entangled states created by these opera-
tions.

Measurement of the ions is accomplished by stimulat-
ing a cycling transition between the bright state and an-
other internal state (outside of the computational ba-
sis). This transition is well aligned with the quantiza-
tion axis and highly detuned from the dark state, which
implies observing fluorescence is a projective measure-
ment of an ion in the bright state. The ions are close to-
gether in the trap, so the measurement cannot distinguish
which ion is fluorescing. The corresponding POVM con-
sists of subspace projectors, Π = {Π0 = |↓↓〉 〈↓↓| ,Π1 =
|↓↑〉 〈↓↑| + |↑↓〉 〈↑↓| ,Π2 = |↑↑〉 〈↑↑|}. However, we can-
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not observe the outcome of this POVM directly in any
experiment since the number of photons in the fluores-
cence signal is distributed according to counting statistics
as well as other detection errors such as dark counts, re-
pumping to the dark state, or detector inefficiency. These
effects act as the Markov process described above, so the
observed outcomes are associated with the POVM, F .

Simulated histograms of the above states are shown in
Fig. 3. With the processes considered, we cannot create
an IC set of engineered POVMs because the POVM Π
(and therefore also F ) cannot distinguish the two single-
ion-bright states and all of the rotations in U act equally
on both qubits. However, the measurements are sufficient
to identify a Bell state fidelity, as is discussed in Sec. V.

IV. MAXIMUM LIKELIHOOD ESTIMATION
TECHNIQUE

We now present a maximum likelihood estimation
(MLE) technique that produces numerical estimates of
the measurement operators and the unknown states. Like
all MLE techniques, if the true operators and states are
not on the boundary, the technique is optimal in that
its variance asymptotically approaches the Cramér-Rao
lower bound [24]. Our algorithm starts by coarse grain-
ing the outcome space b, which condenses the data to
speed up the numerical processing. We then create an
initial estimate of the transition matrix Q. Finally, we
search for the estimates of Q and σ that maximize the
total log-likelihood function of all the data. This is ac-
complished by an alternating approach. While this is not
proven to yield the maximally likely operators and states
in all instances, we have found no counterexamples and
believe that the maximum likelihood solution is typically
found.

The first step is to coarse grain the outcome space. In
many cases, the set of possible values of the outcomes
b is large, that is b = 1, . . . ,M where M � 1. The
collected histograms and transition matrix are then also
large, which is a main contributor to the computational
cost of likelihood maximization. Coarse graining the out-
come space shrinks the histograms and transition matrix,
thereby reducing the complexity. The coarse graining is
accomplished by creating a pre-specified number G < M
of contiguous bins on the set of possible outcomes. Each
bin is defined by its edges in the outcome space. We in-
dex the bins, which correspond to new coarse-grained
outcomes, by c = 1, . . . , G. Each outcome b is then
reassigned to a coarse-grained outcome c based on the
bin edges. The bin edges are constructed according to
a heuristic that minimizes the information loss between
the original outcomes and the coarse grained outcomes
(details are in Appendix B). We randomly select without
replacement 10 % of the trials from the reference exper-
iments as a training set with which we choose the bin
edges. The training set is then excluded from further
analysis. (To simplify notation, in the results presented

below, we simulated reference experiments with (10/9)n
trials so that the number of trials for reference and prob-
ing experiments is equal after coarse graining, although
the technique can be used with unequal numbers of tri-
als.) The coarse-grained outcomes then determine a new

set of histogram matrices H
(j)
i,c , measurement operators

Fc, and transition matrix Qk,c. For the remainder of the
paper we discuss the coarse-grained version of each.

The next step is to use the reference histogram matrix
H(0) to derive an initial estimate of the transition matrix
Q, which we later use to initialize the likelihood maxi-
mization. In the limit of infinite trials H(0) is equal to
the probability distribution from Eq. (3) but with a finite

number of trials H
(0)
i,c ≈

∑
kQk,cTr(Πkρi). We can re-

express this relation in matrix form, H(0) ≈ PQ, where Q
has elements Qk,c, and P has elements Pi,k = Tr(Πkρi).
We refer to the elements Pi,k as “populations,” since
they are the probabilities that state i is in subspace
k. The population matrix P is known a priori, because
the states are prepared with the high-fidelity processes.
Therefore, we can derive an initial estimate for Q, which
describes the bare measurement, by applying the left
pseudo-inverse of P ,

Q̂ini =
(
P>P

)−1
P>H(0). (7)

The left pseudo-inverse exists when rank(P ) = N , that is,
the number of subspace projections. This requires that
the states span the subspace that is spanned by the un-
derlying POVM. We only consider situations where this
condition is met. The initial estimate of the transition
matrix is also used to calculate an initial estimate of the
observed measurement operators, F̂ ini

c =
∑
k Q̂

ini
k,cΠk.

The final step, is to determine estimates of the states
and measurement operators that maximize the total like-
lihood function L. To derive L, we first need the proba-
bility of observing a given histogram matrix H(j), which
is the product of the probabilities of observing each out-
come from Eq. (5) and is given by

Prob(H(j)|τ ,F ,U) =
∏
i,c

Tr (U†i [Fc]τj)
H

(j)
i,c . (8)

The probability of obtaining the histogram matrix from
all of the experiments given the unknown and the known
parameters is then

Prob(H|τ ,F ,U) =
∏
j,i,c

Tr (U†i [Fc]τj)
H

(j)
i,c , (9)

where H = {H(j)}j . This probability is the total like-
lihood function L. When we maximize L, we vary the
unknown parameters σ and F , which are the parameters
of the statistical model, and keep the known parameters
ρ0, U and the histogram matrix H fixed. To emphasize
the distinction between varying and fixed parameters,
we write the likelihood function as L(σ,F |H,U , ρ0) =
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FIG. 3. Histograms from simulated measurements of two ions. An individual ion fluoresces if it is in the |↑〉 (bright) state.
We model the distributions of photon counts as Poissonians. In a real experiment the distributions differ from Poissonians due
to processes such as repumping from the dark to the bright state. For two ions, there are three possible count distribution
corresponding to the total number of ions in the bright state: zero ions bright (mean 2, due to dark counts), one ion bright
(mean 20), and two ions bright (mean 40). For one ion bright, the photon detector cannot determine which of the two ions is
fluorescing. (a) Relative frequency histograms for both ions in the dark state (blue), one ion on the dark state (orange), both
ions in the bright state (red). (b) Relative frequency histogram for the reference experiment with U1 = U(π

2
, 0)⊗2. (c) Relative

frequency histogram for the probing experiment with U3 = U(π
2
, π
2

)⊗2.

Prob(H|τ ,F ,U). The estimates for the states and mea-
surement operators that maximize L also maximize the
log-likelihood function L = log(L). As is standard prac-
tice, we maximize L instead of L because L has conve-
nient concavity properties, and it avoids numerical issues
with extremely small values. The log-likelihood is

L(σ,F |H,U , ρ0) =
∑
i,j,c

H
(j)
i,c log Tr (U†i [Fc]σj). (10)

In this case, the log-likelihood is not a concave function,
which makes it difficult to determine the global maximum
value. However, L is separately concave in σ and F .
This can be confirmed by computing the log-likelihood’s
second derivatives with respect to σ and F and noting
that they are negative semidefinite.

We present an iterative technique to find the maximum
of L. Since the log-likelihood is separately concave in σ
and F , optimizing over one while holding the other fixed
is a concave optimization problem whose local maxima
are global maxima. So to maximize L over both σ and F
jointly, we alternate between two subproblems: (1) con-
cave optimization over σ with F fixed, and (2) concave
optimization over F with σ fixed (details are given be-
low). Here, we describe the subproblem optimizations in
the case of a single unknown state, σ = {σ} (we drop
the boldface notation for the unknown states since the
family has a single member), which requires a single set
of probing experiments with histogram matrix H(1).

The first subproblem is maximization of the log-
likelihood with respect to the unknown density matrix σ
keeping the measurement operators fixed at their current
estimate F̂ cur. For the initial step, we fix the measure-
ment as F̂ cur = F̂ ini. For this subproblem the objective
function is

L1(σ|H(1),U , F̂ cur) =
∑
c,i

H
(1)
c,i log Tr (U†i [F̂ cur

c ]σ). (11)

Note that L1 only uses the histogram matrix H(1) from
the probing experiments because the reference experi-
ments are independent of σ. We numerically search for
the density matrix σ that maximizes L1 by solving

maximize:
σ

L1(σ|H(1),U , F̂ cur),

subject to: Trσ = 1,

σ � 0,

(12)

where σ � 0 means that σ is a positive semidefinite ma-
trix. To accomplish this, we use the RρR algorithm [21,
25], initialized with σ(1) = σ̂cur (σ̂cur = 1/d for the first
iteration). At the kth iteration of the algorithm, the
state σ(k) is updated to σ(k+1) = N (R(σ(k))σ(k)R(σ(k))),
where N indicates normalization, and R is

R(σ) =
∑
i,c

H
(1)
i,c F̂

cur
i,c

Tr (σF̂ cur
i,c )

. (13)
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This ensures that at each iteration the estimate is phys-
ical and the likelihood is non-decreasing [21]. The al-
gorithm is run until the stopping condition derived in
Ref. [26] is met. For multiple unknown states, L1 is the
sum of the log-likelihoods for each state L1 =

∑
j L1(σj),

where L1(σj) has the form of Eq. (11). To maximize L1

in this case, we calculate R for each σj and iteratively
update each σj individually.

The second subproblem is maximization of the log-
likelihood with respect to the measurement operators,
F , with σ fixed at its current estimate σ̂cur returned by
the most recent use of the RρR algorithm. The objective
function for this subproblem is

L2(F |H,U , τ̂ cur) =
∑
c,i,j

H
(j)
c,i log Tr (U†i [Fc]τ̂

cur
j ), (14)

where τ̂ cur = (ρ0, σ̂
cur). Because the measurement oper-

ators are constrained according to Eq. (2), we re-write
the objective function as

L2(Q|H, P̂ cur) =
∑
c,i,j

H
(j)
c,i log

(∑
k

Qk,cP̂
cur
k,i,j

)
, (15)

where P̂ cur = {Tr (U†i [Πk]τ̂ curj )}k,i,j . We use a standard
nonlinear multi-variable optimizer to solve the following
problem:

maximize:
Q

L2(Q|H, P̂ cur),

subject to:
∑
c

Qc,k = 1, ∀ k,

0 ≤ Qc,k ≤ 1, ∀ k, c.

(16)

The program is initialized with the current estimate
of the transition matrix Q̂cur (Q̂ini for the first itera-
tion) and runs until a pre-specified stopping tolerance
is reached. All histogram matrices are considered in the
optimization, which ensures that the estimated transi-
tion matrix Q̂ is consistent with both the reference and
probing experiments described in the previous section.

The assumption that the measurement operators are
linear combinations of an underlying POVM significantly
simplifies the program in Eq. (16). Without this assump-
tion, we would require semi-definite constraints to ensure
that the measurement is physical. With the assumption,
the linear constraints ensure that the estimated transi-
tion matrix Q̂ is a probability distribution and thus the
corresponding observed measurement operators F̂ are
physical.

We alternate between these two subproblems until
a gradient-based stopping criterion is met (see Ap-

pendix C), yielding estimates σ̂ and F̂ . While there is
no guarantee that these estimates correspond to a global
maximum [27], in numerical experiments we find the al-
gorithm converges to estimates that are close to the true
parameters.

There may be states other than σ̂ that produce the
same maximum value of the likelihood function. This

occurs when the high-fidelity processes do not generate
an IC set of POVMs, that is, {F̂i,c}i,c does not span
the space of bounded operators. This is the case in
the trapped-ion example given at the end of Sec. III,
where the POVM cannot determine which ion is in the
bright state. In this case, σ̂ is an element of the “set of
MLE states” where each element of the set produces the
same maximum value of the likelihood function. Simi-
larly, there may be transition matrices other than Q̂ that
yield the same maximum value of the likelihood function.
This occurs when the family of known input states do not
span the subspace of the underlying POVM. However, as
mentioned previously in this section, we do not consider
this case because it would cause other complications with
our initialization and would complicate the estimation of
expectation values described in the next section.

V. ESTIMATION OF EXPECTATION VALUES

To gain information about the unknown states, we can
estimate the expectation value 〈O〉 = Tr(Oσ) of any ob-
servable O. We can calculate the observable’s expecta-
tion value according to the point estimate from the likeli-

hood maximization as ˆ〈O〉 = Tr (Oσ̂). However, if the set
of POVMs is not IC then it is possible that the set of MLE
states contains more than one element, and each element
may have a different expectation value with respect to
O. This leads to a set of possible expectation values for
the unknown state, which are all equally likely. Never-
theless, we can still learn about the unknown states by
determining bounds on the expectation value. This is ac-
complished by searching for the elements in the MLE set
that provide the largest and smallest expectation values,
which corresponds to the pair of semidefinite programs
(SDPs)

minimize:
ρ

± Tr (Oρ),

subject to: Tr ρ = 1,

ρ � 0,

Tr
(
F̂i,c(ρ− σ̂)

)
= 0, for all i, c.

(17)

The last constraint ensures that ρ is in the set of MLE
states by constraining the expected probability of each
outcome to be equal to that of σ̂. When this is the case,
the log-likelihood of any ρ obeying the constraint is equal
to the log-likelihood of σ̂.

As formulated above, the last line of the SDP con-
tains |{Fi,c}i,c| constraints, many of which may be redun-
dant, thereby causing increased computation time. We
reduce the number of constraints by finding an orthog-
onal basis that spans {F̂i,c}i,c. This is done by defin-
ing a size |{Fi,c}i,c| × d2 matrix F , where each row is

the measurement operator F̂i,c written as a 1 × d2 vec-
tor. We then calculate the singular value decomposition,
F = WSV †. The measurement operators {F̂i,c}i,c are
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FIG. 4. Conceptual schematic of bounding expectation val-
ues. The likelihood maximization returns an estimate σ̂ that
is an element of the set of density matrices that maximize the
likelihood (green line). Projecting from the set of maximum
likelihood density matrices onto the line representing observ-
able O1 gives a unique expectation value. Because O1 is in
the span of the estimated measurement operators, each maxi-
mum likelihood density matrix has the same expectation value
for O1. Observable O2 is only partially contained within the
span of estimated measurement operators. The SDP provides
upper and lower bounds of its expectation value.

in the span of the rows of V †. To reduce the number of
constraints in the SDP, we create V ′† by discarding the
rows of V † corresponding to the ` smallest singular val-
ues, where the value of ` is equal to d2 minus the number
of nonzero singular values of the related matrix formed by
the underlying measurement operators, {Πi,k}i,k. Now,
we replace the last constraint in the above SDP with

Tr [V ′†k (ρ− σ̂)] = 0, where V ′†k is the matrix formed from

the kth row of V ′†. This reduces the number of these
constraints to d2 or fewer.

Observables can be divided into two types, identifiable
and set-identifiable, shown in Fig. 4. First, identifiable
observables have the same expectation value for every
element in the set of MLE states. In this case the two
SDPs return the same expectation value. An identifiable
observable O1 is in the span of the estimated measure-
ment operators, namely there exist coefficients fi,c such

that O1 =
∑
i,c fi,cF̂i,c. The expectation values are then

proportional to the estimated outcome probabilities

ˆ〈O〉 = Tr (Oσ̂) =
∑
i,c

fi,c Tr (F̂i,cσ̂). (18)

Since Tr (F̂i,cσ̂) has an associated empirical estimate

given by H
(1)
c,i , we can directly calculate ˆ〈O〉. When

{Fi,c}i,c are IC, they span the space of Hermitian op-
erators, and every observable is identifiable. We do not
explicitly check if a decomposition of the form used in
Eq. (18) exists apart from running the SDPs.

Set-identifiable observables have a range of expectation
values over the MLE states. If {Fi,c}i,c does not span all
Hermitian operators, then there necessarily exist observ-
ables that are set-identifiable. The SDPs provide tight

Observable O1 = |Φ+〉 〈Φ+| O2 = |↓↑〉 〈↓↑|
True 〈O〉 0.9925 2.5× 10−3

M.L. 〈O〉 0.9902 2.452× 10−3

SDPs (0.9902, 0.9902) (2.361, 2.543)× 10−3

Basic C.I. (0.9849, 0.9943) (1.296, 3.451)× 10−3

Bias corrected C.I. (0.9841, 0.9944) (2.522, 4.357)× 10−3

TABLE I. Numerical results from the two-ion example. The
procedure is applied with measurement operators and high-
fidelity unitary processes described in Sec. IV and unknown
state σ = 0.99 |Φ+〉 〈Φ+| + 0.01

4
1. “True 〈O〉” is the true

expectation value for the prepared state, “M.L. 〈O〉” is the
estimated expectation value with σ̂, “SDPs” are the (lower,
upper) bounds returned from the semidefinite programs, “Ba-
sic C.I.” is the 95 % confidence interval found with the basic
method and “Bias corrected C.I.” is the 95 % confidence in-
terval found with the bias corrected method.

upper and lower bounds on the ranges of the expectation
values.

In the two-ion example, the measurements are not in-
formationally complete so there are both identifiable and
set-identifiable observables. An example of an identifi-
able observable is the Bell state, O1 = |Φ+〉 〈Φ+|, where
|Φ+〉 = 1√

2
(|↑↑〉+|↓↓〉). Since σ is an attempted Bell state

preparation, O1 measures the fidelity. The Bell state can
be written in terms of the measurement operators,

|Φ+〉 〈Φ+| = Π0 + Π2

+
[
U(π2 , 0)⊗2

]†
Π1U(π2 , 0)⊗2

−
[
U(π2 ,

π
2 )⊗2

]†
Π1U(π2 ,

π
2 )⊗2. (19)

In principle, one could calculate the fidelity by finding
the probability of each measurement outcome with an
operator in the expansion above. However, the SDP al-
gorithm allows for exact calculation without knowing the
expansion.

An example of a set-identifiable observable about
which we can gain partial information is the probabil-
ity that the 2nd ion is in the bright state, O2 = |↓↑〉 〈↓↑|.
This operator does not have an expansion in terms of the
engineered measurements, unlike the Bell state. How-
ever, we can still gain partial information about the 2nd
ion bright via the SDP. Upper and lower bounds of both
example observables are reported in Table I along with
the true value of the expectation value and the value with
respect to the point estimate.

VI. UNCERTAINTIES

To quantify the uncertainty in our procedure we use
parametric bootstrap resampling. For this method, one
generates samples from the estimated probability distri-
bution, which simulates new repetitions of the exper-
iments, and uses the results to estimate the distribu-
tion of various parameters [28]. For our case, the es-
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timated probability distribution is defined by Eq. (5)

with τ = (ρ0, σ̂) and Q = Q̂, the estimates produced
by the MLE algorithm. We numerically sample this dis-
tribution n times for each combination of state (index
j) and engineered POVM (index i) to create a simu-
lated histogram for each of the experiments described
in Sec. II. The bootstrap resampling is performed with
coarse-grained measurement outcomes according to the
same binning rule so that the bootstrap histogram ma-
trices have the same structure as the original binned ex-
perimental histogram matrices. We repeat the numerical
technique from Sec. IV and expectation value bounding
SDPs from Sec. V on the numerically generated data to
produce new estimates for the measurements, states, and
upper and lower bounds for 〈O〉. We repeat this entire
bootstrap procedure t times, producing a distribution of
estimated measurement operators, states, and bounds on
observables.

We use the bootstrap distribution to estimate the un-
certainty in our method by calculating approximate 95 %
bootstrap confidence intervals of the bounds on observ-
ables. For identifiable observables (such as the Bell-state
fidelity) the confidence interval can be calculated with
standard techniques (see below). However, when report-
ing uncertainty for expectation values of set-identifiable
observables a complication arises. In these cases, the
expectation values are lower and upper bounded by the
SDPs, but in each bootstrap resample different lower and
upper bounds will be estimated. Therefore, there exists
uncertainty from the observable being set-identifiable as
well as from the bootstrap distribution. To incorporate
both uncertainties, we calculate 97.5 % one sided confi-
dence intervals for the lower and upper bounds separately
and report the overlapping range, which is a 95 % confi-
dence interval.

There are many methods to determine the bootstrap
confidence intervals, but these methods make assump-
tions that are often not satisfied in our situation. In
simulations, we see that the bootstrap distributions for
the upper and lower bounds of set-identifiable observ-
ables are commonly biased or asymmetric. This is de-
tected by observing a difference between the median of
the bootstrap resamples and the estimate from the origi-
nal data. Bias in maximum likelihood quantum state to-
mography has also been reported in Ref. [29–31]. These
effects are caused by the nonlinearity of the estimator
and the complicated structure of the boundary of quan-
tum state space, which necessarily affects our lower and
upper bounds on expectation values due to the nature
of the SDPs. Certain techniques to construct confidence
intervals, such as the percentile method [32], are sensi-
tive to bias and asymmetry, and are therefore contraindi-
cated. Further, the bias and boundary issues imply that
the theory underlying other bootstrap confidence interval
methods is not applicable. As a result, we expect system-
atic coverage probability errors that cannot be removed
by increasing the number of bootstrap samples.

Nevertheless, for moderate confidence levels between

60 % and 95 %, intervals obtained can still be useful for
descriptive purposes. To this end, we report two meth-
ods, the basic [33] and bias corrected [32] bootstraps,
which both have some robustness to bias and asymme-
try, though neither is designed for high dimensional esti-
mates with boundary constraints. These methods return
sometimes very different confidence intervals (c.f. in Ta-
ble I for O2). Therefore, we stress that both should be
taken only as qualitative descriptions of the uncertainty
and not used for further inference.

More sophisticated methods to deal with bias and
asymmetry exist (e.g. the bias corrected and acceler-
ated method in Ref. [32]). However, such methods are
not designed to address the underlying problems encoun-
tered. Another possibility may be to use methods that
involve a double bootstrap, but they are impractical for
our procedure. Further research is required to obtain
high-quality bootstrap confidence intervals for quantum
tomography. Alternatively, one might adapt the confi-
dence regions described in Ref. [34, 35], which are not
based on the bootstrap.

The bootstrap procedure also allows us to perform a
likelihood ratio test to determine how well our model fits
the observed data. The “likelihood ratio” is the ratio
of the likelihood of our null model, the estimates of σ̂
and F̂ from the experimental data (with log-likelihood
given by the iterative program discussed in Sec. IV), to
the likelihood of an alternative model, the experimental
frequency histogram matrix with log-likelihood function,

Lfrq(H) =
∑
i,j,c

H
(j)
i,c logH

(j)
i,c . (20)

To perform the likelihood ratio test we compare the like-
lihood ratio of the original estimates to the distribution
of likelihood ratios created by the bootstrap procedure.
The likelihood ratio test statistic is

Λ0 = L(σ̂, F̂ |H,U , ρ0)− Lfrq(H). (21)

We also compute an analogous statistic for each of the
t bootstrapped data sets (each computed using its own
simulated histogram matrices and respective state and
measurement estimate) to generate a distribution of like-
lihood test statistics, {Λi|i = 1, . . . , t}. Because the boot-
strap data sets are certainly well described by the null
model, their likelihood ratios should typically be com-
parable to the likelihood ratio of the experimental data
set, which may or may not obey the model. A statisti-
cally significant difference between the experimental data
set’s likelihood ratio and the bootstrap data sets’ is evi-
dence that the null model does not match the experiment.
To quantify evidence against the null model, we com-
pute an empirical p-value by determining the percentile
at which Λ0 falls in the distribution from the bootstrap
data sets [28].
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VII. CONCLUSION

We have developed a procedure to simultaneously char-
acterize unknown quantum measurements and states by
using a limited set of high-fidelity quantum operations.
The protocol requires two types of experiments, which we
designated as “reference” and “probing.” The reference
experiments use the high-fidelity processes to estimate
the unknown measurement operators, similar to QDT.
The probing experiments use the high-fidelity processes
to probe unknown state preparations, similar to QST. In
our procedure the estimation of the measurement opera-
tors and density matrices is achieved simultaneously via
alternating MLE. This means the estimates produced are
consistent with both reference and probe experiments.
We also introduced a method for estimating expectation
values of the unknown states by two SDPs when the high-
fidelity processes do not produce IC measurements.

Our procedure applies to systems where we can apply
certain operations with high fidelity. These need not be
universal, a small set of single-qubit unitaries suffices. A
sufficient set of such operations is available in many state-
of-the-art quantum information processors, for example
trapped ions. Moreover, our protocol has the advantage
that it is efficient to implement relative to previous pro-
posals. This is because we make use of prior information
about the measurement operators and do not seek to di-
agnose all parts of the quantum system. However, since
our protocol is dependent on prior information about the
system, it is not ideal for experiments that have not previ-
ously been diagnosed. In the absence of a well defined ini-
tial state and sufficiently many high-fidelity operations,
methods such as GST may be better suited.

Our implementation and testing of this estimation pro-
cedure has focused on a few trapped ions. In this system,
measurements can be modeled as classical noise follow-
ing projection onto a small number of orthogonal sub-
spaces and measurement outcomes that can be parti-
tioned into a small number of bins with little informa-
tion loss. In principle, the procedure can handle higher
dimensional systems and measurements that consist of
multi-dimensional histograms but further optimization is
required to run these cases efficiently. There are also op-
portunities for expanding our procedure by applying it
to systems with measurements that cannot be modeled
as orthogonal projection followed by classical noise.

Appendix A: Software implementation

We implemented our procedure as a Python package,
available at Ref. [36]. Instructions for installing and run-
ning the package are given in the accompanying docu-
mentation. Our package contains a version ofRρR for the
first optimization subproblem, and uses scipy.optimize
for the second optimization subproblem. The SDPs that
estimate the expectation values described in Sec. V re-
quire the MATLAB API engine. The SDPs are solved

with YALMIP [37], which is a package for MATLAB.

Appendix B: Coarse-graining measurement
outcomes

The measurement device may have a very large num-
ber of possible outcomes b = 1, . . . ,M where M � 1.
This is a main contributor to the computational com-
plexity of the log-likelihood maximization, because each
outcome adds a term to the log-likelihood function, which
requires more computation for finding R in the first sub-
problem and increases the optimization space for the sec-
ond subproblem. To reduce the complexity, we coarse
grain the outcome space by collecting the original out-
comes b into G < M bins. (The original outcomes can
also be thought of as binned, so this procedure is techni-
cally a re-binning.) We assume that the ordering of the
original outcomes 1, . . . ,M is meaningful so that it makes
sense to bin consecutive outcomes for minimum informa-
tion loss. The bins are then identified by the bin edges Bc
in the outcome space {Bc|c = 0, . . . , G} where B0 = 0,
and BG = M , so an outcome b ∈ (Bc−1, Bc] is mapped
to the coarse-grained outcome c. Coarse graining reduces
the information about the unknown states and measure-
ments that was captured by our experiments. For an
extreme example choose G = 2 with B1 = 0, then ev-
ery outcome b is mapped to the coarse-grained outcome
c = 1, which provides no information. To combat this
problem, we construct a heuristic algorithm to chose the
bin edges. We apply this algorithm to “training data,”
which is composed of 10 % of the trials from the ref-
erence experiments randomly sampled without replace-
ment and set aside from all further analysis. Though
we describe the algorithm in terms of one-dimensional
histograms here, our software also supports multidimen-
sional histograms.

For a given number G of coarse-grained bins, our al-
gorithm maximizes the amount of information retained
in the coarse-grained outcomes c by a heuristic based on
mutual information. First, we need to identify the in-
formation about the unknown states and measurement.
In our procedure, this information is contained in the
histograms collected from the experiments. These his-

togram matrices H
(j)
i,b are rectangular with vertical di-

mension M , the number of possible outcomes. Coarse
graining the outcomes then shrinks the vertical dimen-
sion to G < M . For bin edges {Bc}c the coarse grained
histogram matrix is defined as

H
′(j)
i,c =

Bc∑
b=Bc−1+1

H
(j)
i,b . (B1)

Note that every histogram (that is, every row of the
histogram matrix) is treated identically. The coarse-
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graining is also applied uniformly to the transition matrix

Q′k,c =

Bc∑
b=Bc−1+1

Qk,b. (B2)

Therefore, both H ′(j) and Q′ have smaller vertical di-
mension due to the coarse graining. In the following, we
study the coarse-grained histogram matrices and transfer
matrix estimated from the training data Htrain = H ′(0)

and Q̂train = Q′ from Eq. (7).
We quantify the amount of information retained in

coarse-grained histograms with the mutual information.
Consider a joint probability distribution P (k, c) where c
are the bin indices and k are underlying outcomes. Let
C and K denote the random variables with values c and
k, respectively. The mutual information IP (K;C) be-
tween K and C quantifies the amount of information C
has about K (or K about C). It is given by

I(K;C) =
∑
k,c

P (c)P (k|c)log2

(
P (k|c)
P (k)

)
, (B3)

where P (k|c) = P (k, c)/P (k) is the conditional probabil-
ity distribution. Our goal for coarse graining is to max-
imize the mutual information, so as to approach the full
information in K, achieved when C = K. We could cal-
culate the mutual information between the original and
the coarse-grained histograms, but what we really care
about is how well the coarse-graining retains information
about the underlying outcome distribution pk = Tr (Πkρ)
discussed in Sec. II. This distribution is dependent on the
state, so we choose a representative state ρ = ρeq with
the property that underlying outcomes have equal prob-
ability, namely P (k) = Tr (Πkρ

eq) = 1/N for all k. We
could estimate the coarse-grained histogram matrix Heq

for ρeq based on the training data’s histogram, but this
relation is dependent on the family of known input states
ρ. Instead we find it more convenient to determine Heq

based on the estimated transfer matrix Qtrain, which al-
ready contains information about the histogram and the
known states, such that Heq

c =
∑
k Q̂

train
k,c

1
N = P (c).

The needed joint probability distribution is given by
P (k, c) = P (c|k)P (k) = P (c|k)/N with

We determine a good coarse graining by finding bin
edges {Bc}c with high mutual information for P (k, c) as
defined in the previous paragraph. Searching over all
possible bin edges to maximize I(K;C) is impractical, so
instead we use a heuristic algorithm that iteratively adds
bin edges. We pre-specify the target number of bins G.
Then, starting with two bins, we compute the mutual
information for each possible location for the bin edge
between 0 and M . The boundary location that gives the
largest mutual information is then fixed as an element of
what will be our final list of bin edges. To add a third
bin, leaving the existing bin edge fixed, we compute the
mutual information for all possible locations for the new
edge. The new edge that gives the largest mutual infor-
mation is added to {Bc}c. We continue this procedure

FIG. 5. Illustration of the binning procedure. (a) Rela-
tive frequency histogram for the second reference experiment,
U1 = U(π

2
, 0)⊗2 (b) Same histogram data but after bin-

ning. The black lines show the bin boundaries found with
the heuristic algorithm.

until the target number of G bins is reached. We ap-
ply the resulting bin edge rule to the remaining reference
histograms not used in the training data, all probing his-
tograms, and Q̂ini by Eq. (B1) and (B2). An example of
binning ion fluorescence data is in Fig. 5.

We have observed that binning consecutive elements in
the rows of H(j) has been effective when systems occu-
pying a single subspace produce unimodal distributions,
such as those produced by the ion measurements. Anal-
ysis of multimodal distributions may benefit from more
complicated binning strategies.

Appendix C: Stopping criteria

After each optimization subproblem is run in an iter-
ation, we bound the difference between the current log-
likelihoods Li (i = 1 and i = 2 for the first and second
subproblems) and their respective maximum possible val-
ues. The bounds tell us how much the log-likelihoods
could increase with further iterations. We stop the algo-
rithm when both differences are individually below pre-
specified thresholds Tσ and TQ.

To find the difference bound for the first subproblem,
we follow the method introduced in Ref. [26]. The bound

Ŝσ is given by,

L1(σML)− L1(σ̂cur) ≤ max{eig[R(σ̂cur)]} − n = Ŝσ,
(C1)

where σML is the maximum likelihood state, and
max{eig[R(σ̂cur)]} is the maximum eigenvalue of R(σ̂cur),
which was computed by the RρR algorithm. We stop it-
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erations of RρR when Ŝσ ≤ Tσ.
The difference bound for the second subproblem is cal-

culated in a similar way. Since the log-likelihood func-
tion of this subproblem is also concave, the difference be-
tween the maximum log-likelihood and the log-likelihood
of Q̂cur is upper bounded by,

L2(QML)− L2(Q̂cur) ≤
∑
k,c

(Q̂cur
k,c −QML

k,c )
∂ L2(Q̂cur)

∂Qk,c
,

(C2)

where ∂ L2(Q̂
cur)

∂Qk,c
are the elements of the gradient of L2.

Since we do not know QML, we bound the right side of
Eq. (C2) by finding the maximum value over all distri-
butions by solving the optimization problem

maximize:
X

∑
k,c

(Q̂cur
k,c −Xk,c)

∂ L2(Q̂cur)

∂Q̂cur
k,c

,

subject to:
∑
c

Xk,c = 1, ∀k,

0 ≤ Xk,c ≤ 1, ∀ k, c.

(C3)

The value ŜQ returned is an upper bound on the differ-

ence between the maximum log-likelihood and the log-
likelihood at the current iteration.

We compare both bounds to the pre-specified thresh-
olds Tσ and TQ. Default values for these thresholds in
the code are currently Tσ = 0.3 and TQ = 0.25, which
were chosen empirically by testing on simulated data rep-
resentative of our ion-trap applications. When Ŝσ ≤ Tσ
and ŜQ ≤ TQ the procedure is stopped, and the final
estimates are returned.
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